
How to upgrade from V3 to V4 using V3V4 Adapter

By OESIS team, 2015

Purpose
This document is to help OESIS V3 customers upgrade to OESIS V4 using the Interface Adapter. The

upgrade process is intended to be a smooth drop-in solution if the customer is following the

recommended practices for OESIS V3 integration. Otherwise, depending on the implementation details,

some limitations would be introduced to the integration after upgrading.

Deployment package
OESIS V4 is completely rebuilt from the ground up as a successor of OESIS V3. It is designed to be an

OESIS V3 replacement with new modern technology. Therefore, everything in the V4 deployment is V4

specific. No part of OESIS V3 exists in the V4 deployment, neither the native V4 package nor the V3V4

Adapter package.

Native OESIS V4 package contains 2 components:

 Engine Package, OESIS_V4_4_X_X_Xr.zip

 Data Package, OESIS_V4_offline_resource_4_X_X_Xr.zip

There are 5 different flavors of V3V4 Adapter available for customer to choose:

 OESIS_V3V4_Adapter_vc8_4_X_X_X.zip

OESIS_V3V4_Adapter_vc9_4_X_X_X.zip

OESIS_V3V4_Adapter_vc10_4_X_X_X.zip

OESIS_V3V4_Adapter_vc11_4_X_X_X.zip

OESIS_V3V4_Adapter_vc12_4_X_X_X.zip

Note: since the Adapter approach is designed to be a temperately solution to help existing OESIS V3

customer to move to OESIS V4 within a short period of time, please do not expect any new CRT versions

of the Adapter package to be supported in future releases.

In order to setup a deployment package with similar features to that of OESIS V3, the customer would

need to download the OESIS V4 Engine Package and one of the V3V4 Adapter packages. Here is an

example of deployment steps of VC9 package:

1. Download OESIS_V4_4_X_X_Xr.zip and OESIS_V3V4_Adapter_vc9_4_X_X_X.zip from our portal.

https://portal.opswat.com/en/product-categories/oesis-framework.

2. Extract both of the packages, and create a temp folder to host the deployment files.

3. Copy libwaapi.dll, libwaheap.dll, libwautils.dll from the following location to the temp folder.

OESIS_V4_4_X_X_Xr\bin\detection\<arch>\release

4. Copy libwalocal.dll, wa_3rd_party_host_32.exe, wa_3rd_party_host_64.exe (optional, only

needed if it is running on an x64 system) from the following location to the temp folder.

OESIS_V4_4_X_X_Xr\bin\manageability\<arch>\release

5. Copy all files under OESIS_V3V4_Adapter_vc9_4_X_X_X\bin\<arch>\release to the temp folder.

6. Copy the pre-downloaded customer specific license.cfg file into the temp folder.

7. After the above 6 steps, the temp folder should contain 19 files as below:

8. Launch the bridgetest.exe for evaluating or testing OESIS V3V4 Adapter feature. The

bridgetest.exe and OesisDiagnose_bridge.exe are not required files.

V3V4 Adapter licensing
Similar to OESIS V4, the V3V4 Adapter license contains 2 components, a license.cfg file and a passkey.

The customer can download the specific license file and passkey from https://portal.opswat.com after

logging in.

https://portal.opswat.com/en/product-categories/oesis-framework
https://portal.opswat.com/

The license.cfg and passkey are pair to pair match, therefore, customer would need both of them to

initial OESIS V3V4 Adapter. The license.cfg need to sit under the same folder as libwaapi.dll. And the

passkey would require to be passed in via the OESIS_SetLicense call. Below is a sample code snip for the

V3V4 Adapter set license call which is actually the same as V3:

Same as OESIS V3, a successful OESIS_Init call must be made before most OESIS function calls will work.

And every call to OESIS_Init must have a call to OESIS_Deinit. Initialization of the internals are held with

reference counts that are incremented and decremented by these 2 functions. Once the reference

count has hit 0, the internals will be deinitialized.

Configuring the integration project
OESIS V4 does not have support for full static libs and neither does the V3V4 Adapter. If the customer

was static linking with OESIS V3 (using the static unified builds), then in order to upgrade to V3V4

Adapter, customer would need to switch to use dynamic linking instead. Here is a step by step guide for

reference:

1. The first step of configuring the project is to add a reference to our include directory.

Note: this is an optional step, if you prefer to use a full path in the #include statements.

2. After that, customer would need to setup the Code Generation setting correctly.

1) Open the Project Properties

2) Navigate to Configuration Properties -> C/C++ -> Code Generation.

3) In the Debug Configuration, set the Runtime Library to "Multi-threaded Debug DLL (/MDd)"

4) In the Release configuration, set the Runtime Library to "Multi-threaded DLL (/MD)"

3. Then customer would need to decide whether to do implicit linking, or use explicit runtime

linking (via LoadLibrary/GetProcAddress).

a. Implicit (dynamic) linking

This gives customer simpler code, but will cost the ability to update OESIS binaries without

shutting down the customer application. To do implicit linking, customer would need to add

OESISCore.lib (or OESISCore64.lib) to the project. NOTE: libbridge.lib can also be used in

place of OESISCore(64) and CoreUtils as it supplies the same exports.

1) Open the Project Properties window again. Navigate to Configuration Properties ->

Linker -> General.

2) In the Additional Library Directories setting, add the path to where OESIS libs can be

found.

3) Navigate to Configuration Properties -> Linker -> Input

4) Under Additional Dependencies, add OESISCore.lib (or OESISCore64.lib)

Note that implicit linking could also be done through #pragma statements, but the concepts are the

same.

b. Explicit (runtime) linking

This will give customer the greatest flexibility in deployment options and features, however

it can complicate the integration code and calls made to the framework. If using Runtime

Linking, there are no additional settings which need to be made to the linker.

Interacting with Microsoft runtime
The native OESIS V4 is statically built in with Microsoft runtime, therefore, the native Engine Package of

OESIS is completely VC independent. The runtime dependency is introduced for the V3V4 Adapter only

and the Adapter dynamically links using the CRT (/MD option).

As mentioned earlier in this document, OESIS now provides VC8, VC9, VC10, VC11 and VC12 version of

the Adapter packages. Depending on which CRT the customer application is using, the customer should

pick the corresponding V3V4 Adapter package.

It is currently a requirement that the customer application dynamically links against the same Microsoft

runtime as V3V4 Adapter. This will simplify the customer deployment, as well as avoid potential issues

with memory heap allocation.

Note: If the customer is statically linking the runtime then there may be possibilities to make this work,

but it adds additional complication and potentially more upgrades to the application code. Since OESIS

and the customer application may not be linked against the same instance of the runtime there may be

needs for using OESIS_FreeTypeProperty to release the memory, where there was no need in the past.

The V3 example code for OESIS_InvokeMethod show examples of using OESIS_FreeTypeProperty with

dynamic allocation, but this may also be necessary with pass-by-reference variables as memory

ownership may transfer to a separate runtime heap with static linking.

Configuring the OESIS options
Unfortunately, the OESIS_Config function from OESIS V3 is mostly unsupported due to the options no

longer being applicable to OESIS V4. Any customer who is using PROP_CORE_RT_IMPL_DIR option

to load all the binaries from a location other than the process location will now need to make a WINAPI

call to SetDllDirectory() to specify the library location before initializing the OESIS API. See msdn for

reference.

In V3V4 Adapter, all the adapter and V4 specific configuration is done through one or more .dat files.

These files could be found under the OESIS_V3V4_Adapter_vcX_4_X_X_X\config folder. Each of them

acts as an enable/disable flag for certain features of the V3V4 Adapter. Simply including them in the

package with the binaries will enable the options.

v3greedy_detection.dat

Enables the greedy detection logic when using V3 data mapping. If this file is present and the

v3map lock file is present then detection results will include all possible detection results for

mapping from V4 to V3.

When V4 detects a product (signature), it will map it back to a V3 product ID. In some cases

there could be more than one option and instead of using the regular deterministic mapping,

the Adapter will return all possible options as detected products. For some products this may

produce results that look like duplicate detection, but ensures that no possible mappings are

missed.

v3map.dat

This enables V3 data compatibility mapping. It is required to use the v3greedy_detection. If this

file is present, V3 data mapping will be used internally by the V3V4 Adapter. All the product

information, including product id, product name and vendor name, would be mapped to the

original V3 data before returning. This should be used if V3 product data is being passed to the

Adapter from legacy data sources that cannot be updated to use V4 ids and names.

v3mockup.dat

This is used for testing the API with provided testing data. If this file is present, mockup_mode

configuration in native OESIS V4 will be used with the V3V4 Adapter. It allows for calls to be

made and return fixed data for those calls to test certain outputs. All data returned is defined by

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686203(v=vs.85).aspx

a mockup.json file. If interested in this functionality there is a SDK Guide in the native OESIS V4

documentation which explains in more detail.

v3service.dat

Enables service mode in native OESIS V4. If this file is present, service_mode configuration will

be used with the V3V4 Adapter. This should be used if the customer integration runs in a service

context under the SYSTEM account on Windows.

Interface compatibility and data compatibility
Both OESIS V4 and V3V4 Adapter are built using data driven design with the target to answer the same
device compliance validation questions to the industry as OESIS V3. It is a brand new technology with
the foundation to be extended and scaled in the future. With all these additional features, neither OESIS
V4 nor V3V4 Adapter is going to be a fully complete, backward compatible solution to the legacy V3.
However, V3V4 Adapter does provide, to some extent, a drop in replacement option to customers who
are using limited OESIS functions for popular security products and follow the best integration practices
from V3. For the rest of our customers who have specific use cases, part of the integration program may
require modification even with the V3V4 Adapter.

Interface compatibility

The V3V4 Adapter maintains around 85% of the APIs from OESIS V3. Since the V3V4 Adapter
does not have static libraries and the OESIS V3 libraries no longer exist, the static interface
functions, such as OESIS_InitStaticAntivirus, are no longer relevant and so no longer exist.
Some security interfaces and OESIS_Invoke calls are not supported and some only support
certain keys for their input and output arguments. Please refer to the OESISV4_upgradeGuide
for the API differences in detail.
The Callbacks and Timeouts interfaces are not supported in the current version of V3V4
Adapter. However, they are on the roadmap to be supported (in some capacity) in a future
release.

Data compatibility

The V3V4 Adapter internally leverages OESIS V4 for actual product implementations and
supports 3000+ applications and 5000+ methods. All this data is coming from the native OESIS
V4 package and therefore this data is V4 data, which includes the product id, product name,
vendor name and etc. In order to have V3V4 Adapter return these information in OESIS V3 data,
the customer could enable the data compatibility using the v3map.dat as mentioned above.
OESIS V3 is built at 2006 and it contains a huge backpack of data for the legacy 3rd party
products, such as implementations for Kaspersky Internet Security 11.x which is from 2009. For
products of this age, OESIS V4 and V3V4 Adapter will not provide support since there is no
reason to increase the package size for information that is no longer relevant. The general
guideline of the V3V4 Adapter is to support major vendor products which are released after
1/1/2013. For any products that are released on or before 2012, it would require on-demand
requests to support them in OESIS V4. Customers would need to contact the OESIS team directly
to request support for certain products that are not included under the general policy.

http://software.opswat.com/OESIS_V4/Upgrade_Guide_from_V3_to_V4/

Parsing OESIS support chart
V3V4 Adapter supports a sub-set of the legacy V3 categories only. Because of the growing nature of the
device security industry, some of the categories are no longer part of the market standard
requirements. In V3, OESIS supports 19 different security categories, but the V3V4 Adapter only
provides support for 14 of them. Two new categories, Cloud Storage Drive and Unclassified are
introduced to better fit in recent use cases. Here is a comparison table for detail:

Category name Supported in V3 Supported in V3V4 Adapter

APSDK Yes Yes

ASSDK Yes Yes

AVSDK Yes Yes

BCSDK Yes Yes

DEVSDK Yes No

DLPSDK Yes Yes

DSSDK Yes No

FWSDK Yes Yes

HASDK Yes Yes (planned)

HDSDK Yes Yes

IMSDK Yes Yes

OBIS Yes Yes (supported as BRSDK)

P2PSDK Yes Yes

PMSDK Yes Yes

SMSDK Yes No

Software Suite Yes No

URLSDK Yes No

VMSDK Yes Yes

VPNSDK Yes Yes

CLDSDK No Yes

UNCSDK No Yes

Similar to OESIS V3, the Adapter provides support charts in XML format with xsl style files. The XML
schema is 99% similar to the legacy V3 ones, depending on how the customer parsing code is built, there
is a very good chance that the support charts could be a drop in replacement for the V3 support charts.

Verifying OESIS APIs during integration
In OESIS V3, the customer would have 2 major debugging tools to verify the OESIS API functions,

V3Testing Harness.exe and OesisDiagnose_V3.exe. Replacements for both of them could be found

within the V3V4 Adapter package still.

The bridgetest.exe is designed to perform individual API call validation for customers. Similar to

V3Testing Harness.exe, it makes API calls to OESIS on demand, function by function. They provide a

similar looking UI as well.

OesisDiagnose_bridge.exe contains similar functionality to OesisDiagnose_V3.exe. It collects some

system information as well as user permissions, and then calls each of the OESIS “get” functions for each

of the detected applications. It generates two output files, one in txt (.log) format, and the other in XML

(.xml) format.

Modifying automation programs which download OESIS packages
Some customers are downloading OESIS from https://portal.opswat.com manually. This step is definitely

still supported and it is always going to work as a fallback. For the customers who use an automation

program to download the latest OESIS package periodically, a modification to those programs will be

required to maintain a similar mechanism.

In OESIS V3, the customer program would go to https://admin.opswat.com/latest.xml to pull down the

xml file, then parse the content to look for download links of the latest OESIS packages. In both OESIS V4

and V3V4 Adapter use case, instead of the origin url, the customer program would need to be switched

to https://software.opswat.com/OESIS_V4/OesisPackageLinks.xml to get similar information.

https://portal.opswat.com/
https://admin.opswat.com/latest.xml
https://software.opswat.com/OESIS_V4/OesisPackageLinks.xml

Within the OesisPackageLinks.xml file, there are direct links to download the OESIS V4 packages as well

as the V3V4 Adapter packages. Each of the package entries contain MD5 and sha256 hash values, which

customers could potentially use to verify whether the package download succeeded or not.

Summary
OESIS V4 and V3V4 Adapter are new technologies which were built in 2014, to replace an aging V3

which is already 8+ years old. Some of the legacy functions and product support are dropped by design

to better achieve the performance and flexibility of OESIS SDK. When upgrading from OESIS V3 to V4,

native OESIS V4 upgrade would require a completely new integration which is estimated to take around

2 weeks of customer engineering time including testing. While V3V4 Adapter is designed to help legacy

V3 customers, as a temporary solution, to move away from V3 within a short period of time. At the time

of this document creation, there is no solid EOL date defined for V3V4 Adapter, however native OESIS

V4 is the suggested integration practice which gives out the best API performance and the richest

feature support. V3V4 Adapter should not be treated as a long term solution for any new customer

integration action.

